# APPLICATION OF INTEGRATED AIR/ENERGY MEASURES IN LOCAL AIR POLLUTION CONTROL

# RENEWABLES HAVE EXTREMELY LOW EMISSION PROFILES (BIOMASS AND GEOTHERMAL HAVE SOME SMALL IMPACTS)

# SIZE OF BENEFITS DEPENDS ON TYPE OF GENERATION DISPLACED. LARGEST BENEFITS COME FROM REPLACING COALFIRED GENERATION

#### Background

- Harmonized strategies for reducing GHGs and criteria pollutants
- Fossil fuel combustion is a major source of CO<sub>2</sub> as well as PM, NO<sub>x</sub>, SO<sub>2</sub>, and CO
- Strong relationship with Ozone

#### Objectives

- Reduce GHGs without impeding progress towards other clean air goals
- Capitalize on opportunities for co-control benefits to achieve GHG <u>and</u> air pollution benefits with economic efficiency
- Highlight technology and policy options

#### Outline

- Sectors
  - Fossil-Fueled Power Generation
  - Renewable Power Generation
  - Transportation
  - Energy-Intensive Industries
  - Residential/Commercial Buildings
  - Municipal Solid Waste
  - Agriculture and Forestry
  - Carbon Sequestration
- Market-Based Mechanisms
- Harmonized Strategy Case Studies
- Conclusions and Next Steps

# Why Does a Multi-Pollutant Strategy Make Sense?

- Increased Environmental Protection
- More Expeditious Attainment
- Regulatory Certainty for Utilities
- Increased Efficiencies

# STAPPA/ALAPCO Menu of Options for Multi-Pollutant Strategies

Analyzed Every Economic Sector

∠ Utilities ∠ Res/Com

Reviewed Market Mechanisms

Modeled Case Studies in Four Areas

# Electric Industry Criteria Pollutant Emissions, 1997

| Pollutant        | Electric Utility<br>Emissions<br>(Short Tons) | Portion of Total U.S.<br>Emissions |
|------------------|-----------------------------------------------|------------------------------------|
| SO <sub>2</sub>  | 12,632,000                                    | 64%                                |
| NO <sub>x</sub>  | 6,178,000                                     | 26%                                |
| PM <sub>10</sub> | 290,000                                       | <1%                                |
| VOC              | 51,000                                        | <1%                                |
| Lead             | 64,000                                        | 2%                                 |
| СО               | 406,000                                       | <1%                                |

#### **Electric Utility GHG Emissions, 1997**

| Greenhouse Gas  | Electric Utility<br>Emissions<br>(MMTCE) | Portion of Total U.S.<br>Emissions |
|-----------------|------------------------------------------|------------------------------------|
| CO <sub>2</sub> | 532.3                                    | 37%                                |
| Methane         | 0.1                                      | <1%                                |
| Nitrous Oxides  | 2.3                                      | 2%                                 |

#### **Power Generation Policy Options**

- Comparable Emission Standards
- Output-Based Emission Standards
- Tax Credits and Subsidies
- Environmental Disclosure
- Emissions Portfolio Standards
- Renewable Portfolio Standards
- Emissions Trading

#### Renewable Power Technology Options

- Hydropower
- Biomass Combustion
- Geothermal Systems
- Wind Turbines
- Photovoltaics
- Solar Thermal

# Renewable Power Strategies: Costs and Emissions Reductions

| Technology                          | Capital Cost<br>(\$/kW) | Total Costs<br>(\$/kWh) | Cost of CO <sub>2</sub><br>Reductions<br>(\$/ton) | Percent<br>CO <sub>2</sub><br>Reduction | Percent<br>SO <sub>2</sub><br>Reduction | Percent<br>NO <sub>x</sub><br>Reduction |
|-------------------------------------|-------------------------|-------------------------|---------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Wind                                | 950-1,100               | 0.039 - 0.07            | 8-47                                              | 100                                     | 100                                     | 100                                     |
| PV (High Volume)                    | 4,500                   | 0.21                    | 153-166                                           | 100                                     | 100                                     | 100                                     |
| Solar Thermal<br>(Parabolic Trough) | 2,700                   | 0.10-0.13               | 60-98                                             | 100                                     | 100                                     | 100                                     |
| Biomass                             | 1,900-2,100             | 0.05-0.095              | 18-64                                             | 100                                     | 98-100                                  | 83-99                                   |
| Landfill Gas (Fuel<br>Cell)         | 5,000                   | 0.07-0.10               | 0.01-0.02                                         | 4,090                                   | >99                                     | >99                                     |
| Geothermal (Flash<br>Stream)        | 1,400                   | 0.05-0.08               | 18-58                                             | 96                                      | 97                                      | 100                                     |
| Hydro at a New Site                 | 1,700-2,300             | 0.055-0.07              | 21-47                                             | 100                                     | 100                                     | 100                                     |
| Hydro at an Existing<br>Dam         | 900-1,100               | 0.033-0.037             | 3-19                                              | 100 <sup>b</sup>                        | 100                                     | 100                                     |

#### **Renewable Power Policy Options**

- Tax Credits
- Systems Benefit Charges
- Air Permitting Exemptions
- Green Pricing Programs
- Renewable Portfolio Standards
- Environmental Disclosure
- Output-Based Emission Standards

# Evaluation of Harmonized Control Strategies

 Developed "What-If" Scenarios For Four Areas:

Atlanta, GA
Louisville, KY
New Hampshire
Ventura, CA

 Areas Selected Power Generation, Transportation Industrial and Commercial Measures to Reduce CO<sub>2</sub> and other Air Pollutants

# Harmonized Strategy Summary for the Four Case Study Areas

|                                                                      | Level of Penetration Modeling for Each Area |             |                   |                       |  |  |  |
|----------------------------------------------------------------------|---------------------------------------------|-------------|-------------------|-----------------------|--|--|--|
| Harmonized Strategies by Sector                                      | New<br>Hampshire                            | Atlanta, GA | Louisville,<br>KY | Ventura<br>County, CA |  |  |  |
| Electric Generation                                                  | 1                                           |             |                   |                       |  |  |  |
| Gas-fired generation converted to gas combined-cycle                 | 0%                                          | 0%          | 0%                | 100%                  |  |  |  |
| Fuel switch from oil or coal to natural gas                          | 25%                                         | 20%         | 0%                | 0%                    |  |  |  |
| Coal-fired capacity displaced by natural gas combined-cycle capacity | 50%                                         | 30%         | 25%               | 0%                    |  |  |  |
| Fossil-fuel generation displaced by renewables                       | 1%                                          | 1%          | 1%                | 1%                    |  |  |  |
| Fossil-fuel generation displaced by fuel cells                       | 1%                                          | 1%          | 1%                | 1%                    |  |  |  |

### New Hampshire on Reductions from Modele

## **Emission Reductions from Modeled Harmonized Strategies (tpy)**

| Harmonized Strategy                                                 | SO <sub>2</sub> | NO <sub>x</sub> | PM  | VOC | СО | CO <sub>2</sub> |
|---------------------------------------------------------------------|-----------------|-----------------|-----|-----|----|-----------------|
| Oil-fired electric generation to natural gas (25%)                  | 2,132           | 161             | 25  | 0   | 0  | 118,396         |
| Coal-fired generation displaced by natural gas combined-cycle (50%) | 19,220          | 7,430           | 873 | 0   | 0  | 1,145,015       |
| Renewables penetration (1%)                                         | 256             | 85              | 10  | 1   | 5  | 33,660          |
| Fuel cell penetration (1%)                                          | 256             | 85              | 10  | 1   | 5  | 22,625          |
| Electricity consumption DSM (5% Commercial/Residential)             | 1,255           | 418             | 48  | 6   | 25 | 165,484         |
| Electricity consumption DSM (2% Industrial)                         | 166             | 55              | 6   | 1   | 3  | 21,844          |
| Total Electric Generation Emission Reductions                       | 23,285          | 8,234           | 972 | 9   | 38 | 1,507,024       |
| % Reduction                                                         | 49%             | 46%             | 48% | 8%  | 2% | 31%             |

### Atlanta, GA Reductions from Modele

### **Emission Reductions from Modeled Harmonized Strategies (tpy)**

| Harmonized Strategy                                     | SO <sub>2</sub> | NO <sub>x</sub> | PM  | VOC | СО | CO <sub>2</sub> |
|---------------------------------------------------------|-----------------|-----------------|-----|-----|----|-----------------|
| Oil/coal generation to natural gas ( up to 20%)         | 8,528           | 2,005           | 39  | 0   | 0  | 702,181         |
| Coal displaced by natural gas combined-cycle (30%)      | 12,792          | 3,686           | 62  | 0   | 0  | 1,245,457       |
| Renewables penetration (1%)                             | 215             | 72              | 5   | 1   | 8  | 37,035          |
| Fuel cell penetration (1%)                              | 215             | 72              | 5   | 1   | 8  | 20,706          |
| Electricity consumption DSM (5% Commercial/Residential) | 694             | 233             | 17  | 3   | 25 | 120,310         |
| Electricity consumption DSM (2% Industrial)             | 139             | 47              | 3   | 1   | 5  | 24,062          |
| Total Electric Generation Emission Reductions           | 22,582          | 6,114           | 133 | 6   | 46 | 2,149,750       |
| % Reduction                                             | 53%             | 47%             | 21% | 5%  | 6% | 38%             |

### Louisville, KY n Reductions from Modele

### **Emission Reductions from Modeled Harmonized Strategies (tpy)**

| Harmonized Strategy                                                 | SO <sub>2</sub> | NO <sub>x</sub> | PM  | VOC | СО | CO <sub>2</sub> |
|---------------------------------------------------------------------|-----------------|-----------------|-----|-----|----|-----------------|
| Coal-fired generation displaced by natural gas combined-cycle (25%) | 15,054          | 7,276           | 65  | 0   | 0  | 2,911,701       |
| Renewables penetration (1%)                                         | 452             | 227             | 3   | 2   | 14 | 136,189         |
| Fuel cell penetration (1%)                                          | 452             | 227             | 3   | 2   | 14 | 105,769         |
| Electricity consumption DSM (5% Commercial/Residential)             | 1,461           | 733             | 10  | 5   | 45 | 441,440         |
| Electricity consumption DSM (2% Industrial)                         | 292             | 147             | 2   | 1   | 9  | 88,288          |
| Total Electric Generation Emission Reductions                       | 17,710          | 8,609           | 83  | 10  | 81 | 3,683,388       |
| % Reduction                                                         | 29%             | 29%             | 23% | 6%  | 6% | 22%             |

# Ventura County, CA Emission Reductions from Modeled Harmonized Strategies (tpy)

| Harmonized Strategy                                     | SO <sub>2</sub> | NO <sub>x</sub> | PM | VOC | СО | CO <sub>2</sub> |
|---------------------------------------------------------|-----------------|-----------------|----|-----|----|-----------------|
| Gas-fired generation to combined-cycle (100%)           | 0               | 0               | 0  | 0   | 0  | 532,874         |
| Renewables penetration (1%)                             | 0               | 4               | .5 | 0   | 8  | 9,981           |
| Fuel cell penetration (1%)                              | 0               | 4               | .5 | 0   | 8  | 3,310           |
| Electricity consumption DSM (5% Commercial/Residential) | 0               | 12              | 1  | 0   | 27 | 32,498          |
| Electricity consumption DSM (2% Industrial)             | 0               | 2               | 0  | 0   | 5  | 6,500           |
| Total Electric Generation Emission Reductions           | 0               | 22              | 2  | 0   | 49 | 585,163         |
| % Reduction                                             | 0%              | 6%              | 5% | 0%  | 6% | 38%             |

#### Percent Reduction from Baseline Emissions in Each Case Study Area

| Area                  | SO <sub>2</sub> | NO <sub>x</sub> | PM  | VOC | CO | CO <sub>2</sub> |
|-----------------------|-----------------|-----------------|-----|-----|----|-----------------|
| New Hampshire         | 41%             | 17%             | 12% | 3%  | 4% | 12%             |
| Atlanta, GA           | 40%             | 6%              | 1%  | 3%  | 4% | 7%              |
| Louisville, KY        | 26%             | 14%             | 3%  | 3%  | 4% | 15%             |
| Ventura County,<br>CA | 2%              | 4%              | 1%  | 4%  | 4% | 11%             |

#### Conclusions

- Tremendous Opportunities Exist for Co-Controlling GHGs and Other Air Pollutants
- Harmonized Strategies Are Available In Every Sector of the Economy
- Strategies Can Achieve Significant Reductions in GHGs and Conventional Pollutants
- Harmonized Strategies Can Be Tailored Based On the Needs and Circumstances of Individual Areas

#### Next Steps

- Final STAPPA/ALAPCO Report on Harmonized Strategies Widely Distributed and Discussed
- STAPPA/ALAPCO Currently Developing User-Friendly Planning Software Tool That Will Enable Users to Easily Assess the Benefits Available from Applying Harmonized Strategies
- Software Tool Targeted for Completion in early 2002

REGULATORS CAN PLAY A MEANINGFUL ROLE IN THE DEVELOPMENT OF RE THROUGH POLICIES AND PROGRAMS UNDER **OUR JURISDICTION AND** THROUGH WORK WITH OUR COUNTERPARTS IN OTHER AGENCIES-STATE ENERGY OFFICES AND UTILITY COMMISSIONS

STATE LOCAL AIR AGENCY **ACTIONS** MAKE RE PRIORITY BUILD INTERNAL CAPACITY **BUILD RELATIONSHIPS** WITH OTHER AGENCIES EVALUATE AREA FOR RE POSSIBILITIES BUILD STAKEHOLDER SUPPORT

# OTHER AIR AGENCY ROLES

- •MARKET MAKER-FLEET PURCHASES
- •BUILDING EFFICIENCY
- •PROCUREMENT LEVERAGE

# SOME LOUISVILLE APCD ENERGY INITIATIVES

FERC-HYDROELECTRIC
DSM INTERVENTION
ICLEI URBAN HEAT ISLAND
LAWN CARE FOR CLEANER AIR
CH&P PROJECT
LAND USE INITIATIVES-TREE COVER,
INFILL, MULTI-MODAL REQUIREMENT

#### APCD ENERGY INITIATIVES

- •GREEN BUILDING DESIGN CHARETTE
- •ICLEI CITIES FOR CLIMATE PROTECTION
- •USDOE/KYDOE INDUSTRIAL ENERGY AUDIT
- •EE/EC PUBLIC WORKSHOPS

#### APCD INTEGRATED APPROACH

•DEVELOP INTEGRATED TEAM-LAND USE, TRANSPORTATION, E2, P2, SUSTAINABLE DEVELOPMENT TO WORK WITH ENGINEERING STAFF AND REGULATED BUSINESSES